
UNCERTAINTY-INFORMED DETECTION OF EPILEPTOGENIC BRAIN MALFORMATIONS

USING BAYESIAN NEURAL NETWORKS

PURPOSE
Focal cortical dysplasia (FCD) is a prevalent surgically-amenable
epileptogenic malformation of cortical development. On MRI, FCD typically
presents with cortical thickening, hyperintensity, and blurring of the gray-
white matter interface 1. These changes may be visible to the naked eye, or
subtle and be easily overlooked. Despite advances in MRI analytics, current
machine learning algorithms 2-5 fail to detect FCD in up to 50% of cases 6.
Moreover, the deterministic nature of current algorithms does not allow
conducting risk assessments of such predictions, an essential step in
clinical decision-making. Here, we propose an algorithm formulated on
Bayesian convolutional neural networks (CNN) 7 providing information on
prediction uncertainty, while leveraging this information to improve
classification performance. Our classifier was trained on a patch-based
augmented dataset derived from 56 patients with histologically-validated
FCD to distinguish the lesion from healthy tissue. The algorithm was
trained and cross-validated on multimodal 3 Tesla MRI data. Compared to a
non-Bayesian learner with the same network architecture and complexity,
the uncertainty-informed Bayesian CNN classifiers showed significant
improvement in sensitivity (89% vs 82%; p<0.05) while specificity was high
for both classifiers. We demonstrate empirically the effectiveness of our
uncertainty-informed CNN algorithm, making it ideal for large-scale
clinical diagnostics of FCD.

METHOD

RESULTS
The 5-fold cross-validation of the Bayesian CNN classifiers resulted in a
sensitivity of 89%, with an average of 50/56 lesions detected, compared
to 82% using the non-Bayesian CNN, at an identical cluster-wise false
positive rate. Non-parametric permutation tests (one-tailed, 10,000
iterations) assessing the pair-wise predictive accuracy based on area
under the curves (AUCs) showed that sensitivity of the Bayesian CNNs
was significantly higher than the non-Bayesian (see Table 1).

CONCLUSION
We present the first deep learning method to segment FCD that
leverages uncertainty for clinical decision-making with the highest
sensitivity to date. Notably, epistemic uncertainty is important for safety-
critical applications and instances with small datasets. Our framework
exploits uncertainty both during the intermediate testing and the final
prediction. Uncertainty estimates can be used to refer uncertain
predictions to experts for further evaluation. This is specially important
when considering that 80% of the FCD lesions detected by the CNN were
missed by conventional radiological inspection. Ease of implementation,
minimal pre-processing, significant performance gains coupled with
uncertainty information make our CNN classifier an ideal platform for
large-scale clinical use, particularly in “MRI-negative” FCD.
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Training. Volumetric 3T T1-weighted 3D-MPRAGE (T1w) and 3D-FLAIR MRI
were collected in 56 patients (mean age: 26±10) with histologically-
verified FCD. Routine MRI was initially reported as unremarkable in 80%.
Images underwent intensity inhomogeneity correction and
standardization. T1w images were registered linearly to the MNI152
template. FLAIR images were linearly mapped to T1w in MNI space.
Classifier design. Volumetric datasets served as inputs to a two-stage
cascaded CNN (Figure 1): the first CNN was designed to maximize
sensitivity (i.e., detecting a maximum number of lesional voxels), while the
second optimized specificity (i.e., reducing false positives,).
Validation. A 5-fold cross validation repeated 5 times tested sensitivity
(prediction co-localizing with manual FCD labels). Specificity was assessed
by testing the model on 38 healthy controls (age: 30±7) and 63 temporal
lobe epilepsy (TLE) patients as disease controls (age: 31±8), matched for
age and sex to the training cohort.

Figure 1. Upper panel: Training and testing schema using two-stage CNNx cascade (CNN1/CNN2). To reduce
training times, multimodal patches (2x16x16x16; centered around the voxel to classify) are sampled from a gray
matter (GM) mask. This mask is generated using intra-subject z-score of FLAIR contrast, discarding hypointense
voxels (z<0.1). Performance (sensitivity) is measured relative to the expert manual labels. The schema also
illustrates the processing workflow of three comparisons [Bayesian (mean- and uncertainty-based) vs Non-
Bayesian] undertaken.
Lower panel: Convolutional network architecture (CNNx) for two-label classification with three consecutive
convolutions and max-pooling units, followed by a voxel-wise softmax classification using multimodal
(FLAIR+T1w) patches. Each convolution is followed by rectified linear units (ReLu) to introduce non-linearity.
Batch normalization (BN) and dropout serve as regularizers. DropoutMC induces stochasticity in the network
predictions. Adadelta serves as the optimizer to minimize the binary crossentropy loss.

Figure 2. A. Receiver operating characteristic (ROC) curves of the three CNN classifiers. The opaque error line
represents the ±1 standard deviation of the area under the curve (AUC) around the mean AUC (solid colored
line). The dotted line represents the AUC for a random classifier. B. The posterior predictive distributional
profiles for FCD lesions and non-lesional tissue of the non-Bayesian CNN (top panel) and Bayesian CNN
(bottom panel – only mean based thresholding depicted). The Bayesian model uncertainty is shown (inset) in
the bottom panel.
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CNN classifier Sensitivity FP Dice AUC Permutation Tests

Non-Bayesian (C1) 82% (46/56) 4±5 0.49 —

Bayesian (C2; mean-based 
threshold)

89% (50/56) 5±4 0.47 C2 > C1 (p<0.05) 

Bayesian (C2; uncertainty-
based threshold)

89% (50/56) 5±5 0.47 C3 > C1 (p<0.05)

Voxel-wise receiver operating characteristics (ROC) curves are shown in
Figure 2A. Higher AUC scores signify better classification performance.
Uncertainty values positively correlated with predictive probabilities at
the individual level for both the mean-based thresholding (healthy
controls: Pearson’s r=0.81±0.03, p<0.05; disease controls: r= 0.77±0.04,
p<0.05) and uncertainty-based thresholding (healthy controls: 0.78±0.04,
p<0.05; disease controls: 0.81±0.03, p<0.05). Specificity in healthy
controls was 84% (no findings in 32/38; 1±0 FPs) for both Bayesian and
the non-Bayesian CNNs; in disease controls, specificity was 87% (no
findings in 55/63; 1±0 FPs) with the Bayesian CNNs, and slightly higher
at 92% (no findings in 58/63; 1±0 FPs) using the non-Bayesian CNN.

Table 1. Performance metrics for the three CNN classifiers. Sensitivity is derived after averaging across 5
trials and thresholding to aggregate voxel as clusters. The rate of false positives (FP) clusters is averaged
across patients. The Dice index represents average FCD lesion coverage compared to manual labeling.


