
Deep convolutional networks for automated detection of epileptogenic brain malformations

PURPOSE
Focal cortical dysplasia (FCD) is a surgically-amenable epileptogenic
developmental malformation. On MRI, FCD typically presents with cortical
thickening, hyperintensity, and blurring of the gray-white matter interface.
These changes may be visible to the naked eye, or subtle and be easily
overlooked 1. Despite advances in MRI analytics, current surface-based
algorithms 2-5 do not detect FCD in >50% of FCD lesions 6.

METHOD

RESULTS
For S1, sensitivity was 87±4% (average of 35/40 FCD lesions detected
with 2±1 extra-lesional clusters). Specificity was 95% in healthy controls
(3±1 clusters in 2/38) and 90% in TLE (1±0 in 7/63).

For cross-dataset classification at 7 sites, overall sensitivity was 91%
(61/67 lesions detected) with 3±2 extra-lesional clusters observed in
47/67 cases. Per-site sensitivity for S1-S7 was 100% (8/8 lesions
detected, 2±2 extra-lesional clusters), 86% (17/19, 4±2), 89% (8/9, 2±1),
75% (6/8, 2±1), 100% (5/5, 5±2), 91% (10/11, 2±3), and 100% (7/7, 2±2),
respectively. Stratifying patients based on age, sensitivity in children (2-
18.5 years old) was 90% (27/30 FCD detected, 4±3 clusters) while in
adults (>19 years old) it was 92% (34/37, 3±2). Figure 2 shows test case
examples.

Training and testing a surface-based classifier based on S1 dataset
yielded a lower performance with a sensitivity of 83±2% (33/40 lesions
detected), with 4±5 extra-lesional clusters. Specificity was 92% in
healthy controls (1±0 cluster in 3/38).

CONCLUSION
We present the first deep learning method to segment FCD, with
multicentric validation. Operating on routine multi-contrast MRI in voxel-
space, our algorithm provides the highest performance to date.
Furthermore, we demonstrated generalizability of a model trained on a
single-site dataset by showing robust performance across independent
cohorts from various centers worldwide with different age, scanner
hardware and sequence parameters. Notably, ~50% of FCD lesions were
missed by conventional MRI visual inspection. Easy implementation,
minimal pre-processing, performance gains, and inference time of <6
minutes/case make this classifier the ideal platform for large-scale
clinical use, particularly in “MRI-negative” FCD.
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Classifier design. Volumetric datasets served as inputs to a two-stage
cascaded CNN (Figure 1): the first CNN was designed to maximize
sensitivity (i.e., detecting a maximum number of lesional voxels), while the
second optimized specificity (i.e., reducing false positives).
Training. Volumetric 3T T1-weighted 3D-MPRAGE (T1w) and 3D-FLAIR MRI
were collected in 40 patients (mean age: 28±9) with histologically-verified
FCD. Routine MRI was initially reported as unremarkable in 80%. Images
underwent intensity inhomogeneity correction and standardization. T1w
images were registered linearly to the MNI152 template. FLAIR images
were linearly mapped to T1w in MNI space.
Validation. At S1, a 5-fold cross validation repeated 20 times tested
sensitivity (prediction co-localizing with manual FCD labels). Specificity
was assessed by testing the model on 38 healthy controls (age: 30±7) and
63 temporal lobe epilepsy (TLE) patients as disease controls (age: 31±8).
Sensitivity was tested in a separate cohort of 67 histologically-confirmed
FCD (37 adults, age: 33±11; 30 children, age: 9±6) across sites with
different scanners, field strengths, acquisition parameters and coils. We
also compare the performance on the S1 dataset using a previously
published method 4 based on an ensemble of RUSBoosted decision trees.

Figure 1. Upper panel: Convolutional network architecture (CNNx) for two-label classification with three
consecutive convolutions and max-pooling units, followed by a voxel-wise softmax classification using
multimodal (FLAIR+T1w) patches. Each convolution is followed by rectified linear units (ReLu) to introduce non-
linearity. Batch normalization (BN) and dropout serve as regularizers. Adadelta serves as the optimizer to
minimize the binary crossentropy loss.
Lower panel: Training and testing schema using two-stage CNNx cascade (CNN1/CNN2). To reduce training times,
multimodal patches (2x16x16x16; centered around the voxel to classify) are sampled from a gray matter (GM)
mask. This mask is generated using intra-subject z-score of FLAIR contrast, discarding hypointense voxels (z<0.1).
Performance (sensitivity) is measured relative to the expert manual labels.

Figure 2. Classification results using the cascaded CNNx trained on 40 FCD patients at site S1 (Siemens TrioTim
3T) to demonstrate generalizability for lesion detection along three axes of heterogeneity: scanner type, field
strength (top labels), and age (bottom labels). The seven cases obtained using different scanners at six sites
(excluding S1) are shown. The top row indicates the strength of prediction overlaid on the FLAIR, while the
second/third rows show the corresponding FLAIR and T1w, respectively. The bottom labels are read as site-
patient-ID/age/gender. MRI-negative cases are identified with .
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We propose a novel algorithm trained using a patch-based
augmented dataset derived from patients with histologically-validated
FCD, operating directly on MRI voxels, to distinguish the lesion from
healthy tissue. Our method harnesses feature learning capability of
convolutional neural networks (CNN). The algorithm was trained and
cross-validated on multimodal MRI data from a single site (S1) and
evaluated on independent data from S1 and six other sites worldwide (S2-
S7) for a total of 107 subjects.
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