
DETECTION OF MRI-NEGATIVE FOCAL CORTICAL DYSPLASIA USING UNCERTAINTY-INFORMED
BAYESIAN DEEP LEARNING:  A MULTICENTRE VALIDATION STUDY 

PURPOSE
Focal cortical dysplasia (FCD) is a prevalent surgically-amenable developmental
epileptogenic lesion. On MRI, FCD typically presents with cortical thickening, hyperintensity,
and blurring of the gray-white matter interface 1. These changes may be visible to the
naked eye, or subtle and overlooked. Despite advances in MRI analytics, current machine
learning algorithms 2-5 fail to detect FCD in up to 50% of cases 6. Also, their deterministic
nature prevents risk assessments of predictions, a crucial step in clinical decision-making.
Here, we propose a deep learning algorithm formulated on Bayesian convolutional neural
networks (CNN) 7 that provides prediction uncertainty, while leveraging this information to
optimize performance. The algorithm was trained and validated on multimodal MRI data
using a leave-one-site-out strategy across 9 epilepsy surgery centers across the world, for a
total of 249 cases.

METHODS

RESULTS
Per-site sensitivity and false positive rates are summarized in the Table.

Overall sensitivity was 87% (129/148 FCD lesions detected; 6±5 extra-lesional clusters ),
including 76% of MRI- cases with lesions initially overlooked on routine exam (Figure 2).

Specificity was 89% in healthy controls (4/38; 2±1) and 89% in TLE (7/63; 1±0).

CONCLUSION
We present the first multicenter automated FCD detection algorithm based on deep
learning with sites contributing data for both training and validation. Our method is
unique as it:
1) operates on multi-contrast MRI in voxel-space
2) demonstrates generalizability (robust performance across independent cohorts with

varying age and scanner hardware).
3) provides similar sensitivity in MRI- and MRI+ FCD.
4) quantifies a degree of confidence via uncertainty maps, thereby allowing to evaluate

non-invasively the FCD lesion relative to putative false positives
5) sets the basis for distributed machine learning through sharing of site-specific

training models, rather than patient data
Easy implementation, minimal pre-processing, and performance gains make this
classifier the ideal platform for large-scale clinical use, particularly in MRI-negative FCD.

REFERENCES
[1] Bernasconi A, et al. Nat Rev Neurol 2011; [2] Adler S., et al. NeuroImage Clin 2017; [3] Hong SJ, et al.
Neurology 2014; [4] Gill RS, et al. MICCAI Proceedings 2017; [5] Tan YL, et al. Neuroimage 2017; [6] Kini LG,
et al. Neuroimage Clin 2016; [7] Gal Y & Ghahramani Z, arXiv:statML 2015.

Training. 3D T1-weighted and 3D FLAIR MRI were collected in 148 patients with
histologically-verified FCD, across 9 sites. Routine MRI was initially reported as
unremarkable in 68 (MRI-negative; 46%) patients. Images underwent intensity
inhomogeneity correction and standardization. T1-weighted images were registered
linearly to the MNI152 template. FLAIR images were linearly mapped to T1w in MNI space.
Classifier design (Figure 1). Volumetric datasets served as inputs to a two-stage cascaded
CNN: the first CNN was designed to maximize sensitivity (i.e., detecting a maximum number
of lesional voxels), while the second optimized specificity (i.e., reducing false positives).
Stochastic forward passes allow computing the voxel-wise uncertainty in predictions.
Validation. A leave-one-site-out cross-validation tested sensitivity (prediction co-localizing
with manual FCD labels) across the 9 sites. Specificity was assessed by testing the model on
38 healthy controls (age: 30±7) and 63 temporal lobe epilepsy (TLE) patients as disease
controls (age: 31±8), matched for age and sex to the S1 cohort.

Figure 1. Upper panel: Convolutional network architecture (CNNx) for two-label (lesional vs. non-lesional) classification with
three consecutive convolutions (kernel size: 3x3x3, filters: 48,96,2) and max-pooling units, followed by a voxel-wise softmax
classification using multimodal (FLAIR+T1w) patches. Each convolution is followed by rectified linear units (ReLu), which
introduce non-linearity. Batch normalization (BN) and dropout (p=40%) prevent network overfitting. DropoutMC (p=20%)
operation after first and second convolution layers are essential to quantify the epistemic uncertainly using dropout Monte
Carlo. Adadelta serves as the gradient descent optimizer to minimize the binary crossentropy loss. Lower panel: Training and
testing schema using two-stage CNN cascade (CNN1/CNN2) that incorporates uncertainty information. Multimodal patches
(centered around the voxel to classify) are sampled from a gray matter mask to reduce training time. This mask is generated
using intra-subject z-score of FLAIR, discarding hypointense voxels (z<0.1). Performance (sensitivity) is measured relative to
the expert manual labels.

Figure 2. Examples of automated FCD detection in MRI-negative FCD. In both cases, the FCD lesion (red circle) has
high probability and low uncertainty, providing high degree of confidence. Conversely, even though false positives
(black dashed circle) may have high probability, high uncertainty make them unlikely to be lesional.
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SITE SCANNER AGE
GENDER
(% ♀) MRI- (%) SENSITIVITY

MRI+ & MRI-
SENSITIVITY

MRI-
FALSE POSITIVE

CLUSTERS

S1-I Siemens 3T TrioTim 27±9 49% 32/45 (71%) 38/45 (84%) 25/32 (78%) 7±4

S1-II Siemens 3T Prisma 18±9 65% 14/17 (82%) 13/17 (76%) 11/14 (79%) 7±4

S2 GE 3T Discovery 11±6 25% 1/8 (13%) 8/8 (100%) 1/1 (100%) 6±5

S3 Philips 3T Achieva 22±17 80% 3/5 (60%) 3/5 (60%) 1/3 (33%) 1±1

S4 Philips 3T Achieva /
GE 3T Signa 8±7 36% 0/11 11/11 (100%) NA 8±6

S5-I Siemens 3T Prisma 23±14 30% 2/10 (20%) 9/10 (90%) 1/2 (50%) 10±6

S5-II Siemens 3T TrioTim 13±12 41% 0/12 11/12 (92%) NA 6±7

S6 Siemens 3T Verio 31±15 63% 2/11 (18%) 11/11 (100%) 2/2 (100%) 3±3

S7 Siemens 3T Skyra / 
Siemens 3T TrioTim 33±13 33% 7/9 (78%) 8/9 (89%) 6/7 (86%) 8±6

S8 Philips 3T Achieva / 
Siemens 1.5T Avanto 24±13 43% 1/7 (14%) 6/7 (86%) 0/1 (0%) 6±5

S9 Philips 3T Achieva 26±8 38% 6/13 (46%) 11/13 (85%) 5/6 (83%) 1±2

68/148
(46%)

129/148 
(87%)

52/68
(76%) 6±5


